|
# Load the dataset
|
|
cat("Task 1: Load Dataset\n")
|
|
data <- read.csv('WestRoxbury.csv', header = TRUE) # Enable Heading
|
|
|
|
# Task 2: Extract the row numbers of the dataset
|
|
row_numbers <- row.names(data)
|
|
cat("Task 2: Row numbers extracted.\n\n")
|
|
|
|
# Task 3: Partition row numbers into subsets
|
|
set.seed(123) # For reproducibility
|
|
row_numbers_shuffled <- sample(row_numbers) # Shuffle row numbers
|
|
|
|
# Number of subsets (10 subsets)
|
|
num_subsets <- 10
|
|
|
|
# Calculate the subset size and the remainder
|
|
subset_size <- floor(length(row_numbers_shuffled) / num_subsets)
|
|
cat("Subset size default is: ", subset_size, "\n")
|
|
remainder <- length(row_numbers_shuffled) %% num_subsets
|
|
cat("Remainder is: ", remainder, "\n")
|
|
|
|
# Create a list of partitioned row numbers
|
|
# the subnet stop at near ending for remainder rows, reserve final subset for adding remainder
|
|
partitioned_row_numbers <- list()
|
|
start_index <- 1
|
|
for (i in 1:(num_subsets - 1)) { # For the first (num_subsets - 1) subsets. Reserve final subset.
|
|
end_index <- start_index + subset_size - 1
|
|
partitioned_row_numbers[[i]] <- row_numbers_shuffled[start_index:end_index] # load row to subset
|
|
start_index <- end_index + 1 # bump up index for next subset in loop.
|
|
}
|
|
# end_index will be recorded for final run on new subset
|
|
# Add the remainder rows to the last subset (subset num_subsets)
|
|
partitioned_row_numbers[[num_subsets]] <- row_numbers_shuffled[start_index:(start_index + subset_size + remainder - 1)]
|
|
|
|
cat("Task 3: Row numbers partitioned into 10 subsets with the remainder in subset 10.\n")
|
|
|
|
# Task 4: Partition the dataset into 10 subsets using the partitioned row numbers
|
|
partitioned_data <- list()
|
|
for (i in 1:num_subsets) {
|
|
# Check if partitioned_row_numbers[[i]] exists and is not empty
|
|
if (length(partitioned_row_numbers[[i]]) > 0) {
|
|
partitioned_data[[i]] <- data[partitioned_row_numbers[[i]], ]
|
|
}
|
|
}
|
|
|
|
cat("Task 4: Dataset partitioned into 10 subsets.\n\n")
|
|
|
|
# Task 5: Display the number of observations in each subset
|
|
for (i in 1:num_subsets) {
|
|
cat("Number of observations in subset", i, "=", nrow(partitioned_data[[i]]), "\n")
|
|
}
|
|
|
|
|