# Import necessary libraries %pip install gurobipy import pandas as pd from gurobipy import * # Define model model = Model("CloudServiceTransportation") # Number of providers (AWS, Azure, Google) m = 3 # AWS, Azure, Google # Number of services (C1, C2, AI/ML) n = 3 # C1, C2, AI/ML # Cost coefficients for AWS, Azure, and Google for each service (no storage cost) costs_AWS = {'C1': 0.1664, 'C2': 0.08, 'AI/ML': 3.06} costs_Azure = {'C1': 0.2021, 'C2': 0.10, 'AI/ML': 0.90} costs_Google = {'C1': 0.1900, 'C2': 0.10, 'AI/ML': 1.80} # Supply limits for each provider (AWS, Azure, Google) - fixed units supply_AWS = {'C1': 100, 'C2': 300, 'AI/ML': 50} supply_Azure = {'C1': 120, 'C2': 180, 'AI/ML': 80} supply_Google = {'C1': 130, 'C2': 200, 'AI/ML': 70} # Demand for each service (C1, C2, AI/ML) demand = {'C1': 100, 'C2': 100, 'AI/ML': 50} # Inter-provider egress costs inter_provider_egress = { ('AWS', 'Azure'): 20, ('AWS', 'Google'): 30, ('Azure', 'Google'): 15, ('Azure', 'AWS'): 25, ('Google', 'AWS'): 35, ('Google', 'Azure'): 10 } # Budget constraint budget = 20000 # Total budget # Decision variables for quantities to transport x = {} # Amount of service allocated y = {} # Binary variable indicating provider selection w = {} # Egress costs between providers # Create decision variables for i, provider_from in enumerate(['AWS', 'Azure', 'Google']): for j, service in enumerate(['C1', 'C2', 'AI/ML']): x[i, j] = model.addVar(vtype=GRB.CONTINUOUS, lb=0, name=f"{provider_from}_{service}") y[i, j] = model.addVar(vtype=GRB.BINARY, name=f"provider_{provider_from}_service_{service}") for k, provider_to in enumerate(['AWS', 'Azure', 'Google']): if provider_from != provider_to: w[i, j, k] = model.addVar(vtype=GRB.CONTINUOUS, lb=0, name=f"egress_{provider_from}_{service}_{provider_to}") # Update model model.update() # Objective function: Minimize total cost (including egress costs) total_cost = ( sum(costs_AWS[service] * x[0, j] for j, service in enumerate(['C1', 'C2', 'AI/ML'])) + sum(costs_Azure[service] * x[1, j] for j, service in enumerate(['C1', 'C2', 'AI/ML'])) + sum(costs_Google[service] * x[2, j] for j, service in enumerate(['C1', 'C2', 'AI/ML'])) + sum(inter_provider_egress[('AWS', 'Azure')] * w[0, j, 1] for j in range(n)) + sum(inter_provider_egress[('AWS', 'Google')] * w[0, j, 2] for j in range(n)) + sum(inter_provider_egress[('Azure', 'Google')] * w[1, j, 2] for j in range(n)) + sum(inter_provider_egress[('Azure', 'AWS')] * w[1, j, 0] for j in range(n)) + sum(inter_provider_egress[('Google', 'AWS')] * w[2, j, 0] for j in range(n)) + sum(inter_provider_egress[('Google', 'Azure')] * w[2, j, 1] for j in range(n)) ) model.setObjective(total_cost, GRB.MINIMIZE) # Supply constraints for i, provider in enumerate(['AWS', 'Azure', 'Google']): for j, service in enumerate(['C1', 'C2', 'AI/ML']): supply_limit = {'AWS': supply_AWS, 'Azure': supply_Azure, 'Google': supply_Google}[provider][service] model.addConstr(x[i, j] <= supply_limit * y[i, j], name=f"supply_{provider}_{service}") # Demand constraints for j, service in enumerate(['C1', 'C2', 'AI/ML']): model.addConstr(sum(x[i, j] for i in range(m)) == demand[service], name=f"demand_{service}") # Budget constraint model.addConstr(total_cost <= budget, name="BudgetConstraint") # Only one provider per service for j, service in enumerate(['C1', 'C2', 'AI/ML']): model.addConstr(sum(y[i, j] for i in range(m)) == 1, name=f"one_provider_per_service_{service}") # Egress constraints: Egress cost applies only when transferring between providers for i in range(m): for j in range(n): for k in range(m): if i != k: model.addConstr(w[i, j, k] <= x[i, j], name=f"egress_constraint_{i}_{j}_{k}") # Optimize model model.optimize() # Display results in a table format if optimal solution is found if model.status == GRB.OPTIMAL: # Create a list to hold the results results = [] # Calculate egress costs dynamically for each provider egress_costs = {'AWS': 0, 'Azure': 0, 'Google': 0} for i, provider_from in enumerate(['AWS', 'Azure', 'Google']): for j in range(n): for k, provider_to in enumerate(['AWS', 'Azure', 'Google']): if provider_from != provider_to: egress_costs[provider_from] += w[i, j, k].x * inter_provider_egress[(provider_from, provider_to)] # Gather results for each provider for i, provider in enumerate(['AWS', 'Azure', 'Google']): row = [provider] # Add allocated quantities of each service for j, service in enumerate(['C1', 'C2', 'AI/ML']): allocated_quantity = x[i, j].x row.append(allocated_quantity) # Append the calculated egress cost row.append(egress_costs[provider]) results.append(row) # Convert to DataFrame for display columns = ['Provider', 'C1 (units)', 'C2 (units)', 'AI/ML (units)', 'Egress Cost ($)'] df = pd.DataFrame(results, columns=columns) # Display the DataFrame and the total optimal cost print(f"Optimal Cost: {model.objVal}") print(df) else: print("No optimal solution found")