this is based on calsyslab project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

270 lines
9.7 KiB

  1. __author__ = 'DarkWeb'
  2. # Here, we are importing the auxiliary functions to clean or convert data
  3. from Forums.Utilities.utilities import *
  4. # Here, we are importing BeautifulSoup to search through the HTML tree
  5. from bs4 import BeautifulSoup
  6. # This is the method to parse the Description Pages (one page to each topic in the Listing Pages)
  7. #parses description pages, so takes html pages of description pages using soup object, and parses it for info it needs
  8. #stores info it needs in different lists, these lists are returned after being organized
  9. #@param: soup object looking at html page of description page
  10. #return: 'row' that contains a variety of lists that each hold info on the description page
  11. def incogsnoo_description_parser(soup):
  12. # Fields to be parsed
  13. topic = "-1" # 0 topic name ***$
  14. user = [] # 1 all users of each post ***$ author
  15. status = [] # 2 all user's authority in each post such as (adm, member, dangerous)
  16. reputation = [] # 3 all users's karma in each post (usually found as a number) ??? ups
  17. interest = [] # 4 all user's interest in each post
  18. sign = [] # 5 all user's signature in each post (usually a standard message after the content of the post)
  19. post = [] # 6 all messages of each post
  20. feedback = [] # 7 all feedbacks of each user (this was found in just one Forum and with a number format)
  21. addDate = [] # 8 all dated of each post ***$ created
  22. image_user = [] # 9 all user avatars of each post
  23. image_post = [] # 10 all first images of each post
  24. # Finding the topic (should be just one coming from the Listing Page)
  25. topic = soup.find("div", {"class": "title"}).find("h2").text
  26. topic = topic.replace('"', '')
  27. topic = cleanString(topic.strip())
  28. # the first post's html is separated from all subsequent comments/replies/posts to the first post
  29. # so parse the first post by itself first
  30. # Finding body of first post
  31. post_text = soup.find("div", {"class": "md"})
  32. if post_text:
  33. post_text = post_text.text.strip()
  34. post.append(cleanString(post_text))
  35. else: # some posts just links to other sites/articles/videos and have no text by itself
  36. post_link = soup.find("div", {"class": "title"}).find("a").get("href")
  37. post_link = cleanLink(post_link)
  38. post.append(post_link)
  39. # User
  40. p_tag = soup.find("p", {"class": "submitted"})
  41. author = p_tag.find("a")
  42. if author:
  43. author = author.text.strip()
  44. elif "[deleted]" in p_tag.text:
  45. author = "deleted"
  46. else:
  47. author = "-1"
  48. user.append(cleanString(author))
  49. # Finding the status of the author
  50. status.append("-1")
  51. # Finding the reputation of the user
  52. reputation.append("-1")
  53. # Finding the interest of the author
  54. interest.append("-1")
  55. # Finding signature
  56. sign.append("-1")
  57. # Finding feedback
  58. upvote = soup.find("div", {"class": "score"}).find("span")
  59. if upvote:
  60. upvote = upvote.text.strip()
  61. else:
  62. upvote = "-1"
  63. feedback.append(cleanString(upvote))
  64. # Finding the date of the post - e.g. "Fri, 18 December 2023 05:49:20 GMT"
  65. dt = soup.find("p", {"class": "submitted"}).find("span")["title"]
  66. # Convert to datetime object - e.g. 2023-12-18 05:49:20
  67. date_time_obj = datetime.strptime(dt, '%a, %d %b %Y %H:%M:%S %Z')
  68. sdate = date_time_obj.strftime('%m %d %Y')
  69. stime = date_time_obj.strftime('%I:%M %p')
  70. date = convertDate(sdate, "english", datetime.now()) + " " + stime
  71. # e.g. "12/18/2023 05:49 AM"
  72. addDate.append(date)
  73. image_user.append("-1")
  74. image_post.append("-1")
  75. posts = soup.find("div", {"class": "comments"}).findAll("details")
  76. # For each message (post), get all the fields we are interested to:
  77. for ipost in posts:
  78. # Finding user
  79. p_tag = ipost.find("p", {"class": "author"})
  80. author = p_tag.find("a")
  81. if author:
  82. author = author.text.strip()
  83. elif "[deleted]" in p_tag.text:
  84. author = "deleted"
  85. else:
  86. author = "-1"
  87. user.append(cleanString(author))
  88. # Finding the status of the author
  89. status.append("-1")
  90. # Finding the reputation of the user
  91. reputation.append("-1")
  92. # Finding the interest of the author
  93. interest.append("-1")
  94. # Finding signature
  95. sign.append("-1")
  96. # Finding the post
  97. comment = ipost.find("div", {"class": "md"})
  98. if comment:
  99. comment = comment.text.strip()
  100. else:
  101. comment = "-1"
  102. post.append(cleanString(comment))
  103. # Finding feedback
  104. upvote = ipost.find("p", {"class": "ups"})
  105. if upvote:
  106. upvote = upvote.text.strip().split()[0]
  107. else:
  108. upvote = "-1"
  109. feedback.append(cleanString(upvote))
  110. # Finding the date of the post - e.g. "Fri, 18 December 2023 05:49:20 GMT"
  111. dt = ipost.find("p", {"class": "created"})["title"]
  112. # Convert to datetime object - e.g. 2023-12-18 05:49:20
  113. date_time_obj = datetime.strptime(dt, '%a, %d %b %Y %H:%M:%S %Z')
  114. sdate = date_time_obj.strftime('%m %d %Y')
  115. stime = date_time_obj.strftime('%I:%M %p')
  116. date = convertDate(sdate, "english", datetime.now()) + " " + stime
  117. # e.g. "12/18/2023 05:49 AM"
  118. addDate.append(date)
  119. image_user.append("-1")
  120. image_post.append("-1")
  121. # Populate the final variable (this should be a list with all fields scraped)
  122. row = (topic, user, status, reputation, interest, sign, post, feedback, addDate, image_user, image_post)
  123. # Sending the results
  124. return row
  125. # This is the method to parse the Listing Pages (one page with many posts)
  126. #parses listing pages, so takes html pages of listing pages using soup object, and parses it for info it needs
  127. #stores info it needs in different lists, these lists are returned after being organized
  128. #@param: soup object looking at html page of listing page
  129. #return: 'row' that contains a variety of lists that each hold info on the listing page
  130. def incogsnoo_listing_parser(soup):
  131. nm = 0 # *this variable should receive the number of topics
  132. forum = "Incogsnoo" # 0 *forum name
  133. board = "-1" # 1 *board name (the previous level of the topic in the Forum categorization tree.
  134. # For instance: Security/Malware/Tools to hack Facebook. The board here should be Malware)
  135. author = [] # 2 *all authors of each topic
  136. topic = [] # 3 *all topics
  137. views = [] # 4 number of views of each topic
  138. posts = [] # 5 number of posts of each topic
  139. href = [] # 6 this variable should receive all cleaned urls (we will use this to do the marge between
  140. # Listing and Description pages)
  141. addDate = [] # 7 when the topic was created (difficult to find)
  142. image_author = [] # 8 all author avatars used in each topic
  143. # Finding the board (should be just one)
  144. board = soup.find("a", {"class": "subreddit"}).find("h2")
  145. board = cleanString(board.text.strip())
  146. # Finding the repeated tag that corresponds to the listing of topics
  147. itopics = soup.find("div", {"id": "links", "class": "sr"}).findAll("div", {"class": "link"})
  148. itopics.pop()
  149. # Counting how many topics we have found so far
  150. nm = len(itopics)
  151. index = 0
  152. for itopic in itopics:
  153. # Finding the author of the topic
  154. p_tag = itopic.find("p", {"class": "submitted"})
  155. user = p_tag.find("a")
  156. if user:
  157. user = user.text.strip()
  158. elif "[deleted]" in p_tag.text:
  159. user = "deleted"
  160. else:
  161. user = "-1"
  162. author.append(cleanString(user))
  163. # Adding the topic to the topic list
  164. topic_title = itopic.find("div", {"class": "title"}).find("h2").text
  165. topic.append(cleanString(topic_title))
  166. # Finding the number of Views
  167. views.append("-1")
  168. # Finding the number of posts
  169. comments = itopic.find("a", {"class": "comments"}).text
  170. number_comments = comments.split()[0]
  171. posts.append(cleanString(number_comments))
  172. # Adding the url to the list of urls
  173. link = itopic.find("a", {"class": "comments"}).get("href")
  174. link = cleanLink(link)
  175. href.append(link)
  176. # Finding dates
  177. p_tag = itopic.find("p", {"class": "submitted"})
  178. dt = p_tag.find("span")["title"]
  179. date_time_obj = datetime.strptime(dt,'%a, %d %b %Y %H:%M:%S %Z')
  180. sdate = date_time_obj.strftime('%m %d %Y')
  181. stime = date_time_obj.strftime('%I:%M %p')
  182. date = convertDate(sdate, "english", datetime.now()) + " " + stime
  183. # e.g. "12/18/2023 05:49 AM"
  184. addDate.append(date)
  185. image_author.append("-1")
  186. index += 1
  187. return organizeTopics(forum, nm, board, author, topic, views, posts, href, addDate, image_author)
  188. #called by the crawler to get description links on a listing page
  189. #@param: beautifulsoup object that is using the correct html page (listing page)
  190. #return: list of description links from a listing page
  191. def incogsnoo_links_parser(soup):
  192. # Returning all links that should be visited by the Crawler
  193. href = []
  194. listing_parent = soup.find("div", {"id": "links", "class": "sr"})
  195. listing = listing_parent.findAll("div", {"class": "entry"})
  196. count = 0
  197. for entry in listing:
  198. parent_div = entry.find("div", {"class": "meta"}).find("div", {"class", "links"})
  199. a_tag = parent_div.find("a", {"class", "comments"})
  200. if a_tag:
  201. href.append(a_tag.get("href"))
  202. # if count == 10:
  203. # break
  204. count += 1
  205. return href