__author__ = 'DarkWeb'

# Here, we are importing the auxiliary functions to clean or convert data
from Forums.Utilities.utilities import *
from datetime import date
from datetime import timedelta
import re

# Here, we are importing BeautifulSoup to search through the HTML tree
from bs4 import BeautifulSoup, ResultSet, Tag


# This is the method to parse the Description Pages (one page to each topic in the Listing Pages)
def libre_description_parser(soup: Tag):
    # Fields to be parsed

    topic = "-1"                   # 0 *topic name
    user = []                      # 1 *all users of each post
    status = []                    # 2 all user's authority in each post such as (adm, member, dangerous)
    reputation = []                # 3 all user's karma in each post (usually found as a number)
    interest = []                  # 4 all user's interest in each post
    sign = []                      # 5 all user's signature in each post (usually a standard message after the content of the post)
    post = []                      # 6 all messages of each post
    feedback = []                  # 7 all feedbacks of each vendor (this was found in just one Forum and with a number format)
    addDate = []                   # 8 all dates of each post
    image_user = []                # 9 all user avatars of each post
    image_post = []                # 10 all first images of each post

    # Finding the topic (should be just one coming from the Listing Page)

    topic_found = soup.find("a", {"class": "link text-xl text-zinc-300"}).text
    topic = cleanString(topic_found.strip())
    
    original_post: Tag = soup.find("div", {"class": "flex items-start"})
    
    original_user = original_post.find("div", {"class": "info-p"}).find("a", {"class": "link"}).text
    user.append(cleanString(original_user.replace("/u/", "").strip()))
    
    original_user_statistics: ResultSet[Tag] = original_post.find("div", {"class": "info-p"}).find_all("span")
    
    original_time = original_user_statistics[0].text[2:]
    datetime_append = datetime.strptime(original_time, "%Y-%m-%d %H:%M:%S GMT")
    addDate.append(datetime_append)
    
    original_karma = original_user_statistics[1].text[2]
    reputation.append(cleanString(original_karma.strip()))
    
    original_content = soup.find("div", {"class": "content-p"}).text
    post.append(cleanString(original_content.strip()))
    

    status.append("-1")
    interest.append("-1")
    sign.append("-1")
    feedback.append("-1")

    image_post.append("-1")

    img = original_post.find('img')
    if img is not None:
        img = img.get('src').split('base64,')[-1]
    else:
        img = "-1"
    image_user.append(img)

    # Finding the repeated tag that corresponds to the listing of posts

    # try:
    posts: ResultSet[Tag] = soup.find_all("div", {"class": "flex items-stretch"})

    # For each message (post), get all the fields we are interested to:

    for ipost in posts:
        # Finding a first level of the HTML page

        # Finding the author (user) of the post

        user_name = ipost.find("p", {"class": "text-zinc-400 text-justify"}).find("a", {"class": "link"}).text
        user.append(cleanString(user_name.replace("/u/", "").strip()))  # Remember to clean the problematic characters

        status.append("-1")

        # Finding the interest of the author
        # CryptBB does not have blurb

        interest.append("-1")

        # Finding the reputation of the user
        # CryptBB does have reputation

        karma = ipost.find("p", {"class": "text-zinc-400 text-justify"}).text
        karma_cleaned = karma.split(" ")[6]
        reputation.append(cleanString(karma_cleaned.strip()))

        # Getting here another good tag to find the post date, post content and users' signature

        date_posted = ipost.find("p", {"class": "text-zinc-400 text-justify"}).text
        date_time_cleaned = date_posted.replace(user_name, "")[3:-12]
        datetime_append = datetime.strptime(date_time_cleaned, "%Y-%m-%d %H:%M:%S GMT")
        addDate.append(datetime_append)

        # Finding the post
        user_post = ipost.find("div", {"class": "content-c"}).text
        post.append(cleanString(user_post))

        # Finding the user's signature

        sign.append("-1")

        # As no information about user's feedback was found, just assign "-1" to the variable

        feedback.append("-1")

        # As no information about post's image was found, just assign "-1" to the variable

        image_post.append("-1")

        # As no information about user's image was found, just assign "-1" to the variable

        image_user.append("-1")

    # Populate the final variable (this should be a list with all fields scraped)
    # print(topic)
    # print(user)
    # print(status)
    # print(reputation)
    # print(interest)
    # print(sign)
    # print(post)
    # print(feedback)
    # print(addDate)
    # print(len(user))
    # print(len(status))
    # print(len(reputation))
    # print(len(interest))
    # print(len(sign))
    # print(len(feedback))
    # print(len(addDate))

    row = (topic, user, status, reputation, interest, sign, post, feedback, addDate, image_user, image_post)

    # Sending the results

    return row


# This is the method to parse the Listing Pages (one page with many posts)
def libre_listing_parser(soup):
    nm = 0                         # *this variable should receive the number of topics
    forum = "Libre"                # 0 *forum name
    board = "-1"                   # 1 *board name (the previous level of the topic in the Forum categorization tree.
    # For instance: Security/Malware/Tools to hack Facebook. The board here should be Malware)
    author = []                    # 2 *all authors of each topic
    topic = []                     # 3 *all topics
    views = []                     # 4 number of views of each topic
    posts = []                     # 5 number of posts of each topic
    href = []                      # 6 this variable should receive all cleaned urls (we will use this to do the marge between
    # Listing and Description pages)
    addDate = []                   # 7 when the topic was created (difficult to find)
    image_author = []              # 8 all author avatars used in each topic

    # Finding the board (should be just one)

    board = soup.find('div', {"class": "title"}).find("h1").text
    board = cleanString(board.strip())

    # Finding the repeated tag that corresponds to the listing of topics

    itopics = soup.find("div", {"class", "space-y-2 mt-4"}).find_all('div', {"class": "flex box"})

    nm = 0
    for itopic in itopics:
        nm += 1
        # For each topic found, the structure to get the rest of the information can be of two types. Testing all of them
        # to don't miss any topic

        # Adding the topic to the topic list
        topic_string = itopic.find("a", {"class": "link text-xl text-zinc-300"}).text
        cleaned_topic_string = cleanString(topic_string.strip())
        topic.append(cleaned_topic_string)

        image_author.append("-1")

        # Adding the url to the list of urls
        link_to_clean = itopic.find("a", {"class": "link text-xl text-zinc-300"}).get("href")

        href.append(link_to_clean)

        # Finding the author of the topic
        username_not_cleaned = itopic.find('div', {"class": "flex-grow p-2 text-justify"}).find('a').text
        username_cleaned = username_not_cleaned.split("/")[-1]
        author.append(cleanString(username_cleaned))

        # Finding the number of views
        num_views = itopic.find_all("div", {"class": "flex items-center"})[0].find("p").text
        views.append(cleanString(num_views))

        # Finding the number of replies
        num_replies = itopic.find_all("div", {"class": "flex items-center"})[1].find("p").text
        posts.append(cleanString(num_replies))

        # If no information about when the topic was added, just assign "-1" to the variable

        date_time_concatenated = itopic.find("p", {"class": "text-sm text-zinc-400 italic"}).text
        date_time_cleaned = date_time_concatenated.replace(username_not_cleaned, "")
        # creating the datetime object
        date_time_array = date_time_cleaned[3:]
        datetime_append = datetime.strptime(date_time_array, "%Y-%m-%d %H:%M:%S GMT")
        addDate.append(datetime_append)

    # print(forum)
    # print(nm)
    # print(board)
    # print(author)
    # print(topic)
    # print(views)
    # print(href)
    # print(addDate)
    # print(len(author))
    # print(len(topic))
    # print(len(views))
    # print(len(href))
    # print(len(addDate))

    return organizeTopics(
        forum=forum,
        nm=nm,
        board=board,
        author=author,
        topic=topic,
        views=views,
        posts=posts,
        href=href,
        addDate=addDate,
        image_author=image_author
    )


def libre_links_parser(soup):
    # Returning all links that should be visited by the Crawler
    href = []
    listing = soup.find_all('div', {"class": "flex-grow p-2 text-justify"})

    for a in listing:
        link = a.find('div', {'class': 'flex space-x-2 items-center'}).find('a').get('href')

        href.append(link)

    return href