import re import pickle from scipy.sparse import coo_matrix, hstack, csr_matrix class Transformer: def __init__(self): self.ngram_list = ['ake', 'eta', 'ail', 'ing', 'sta', 'xpl', 'plo', 'loi', 'oit', 'tat', 'use', 'mal', 'alw', 'lwa', 'vel', 'ell', 'goo', 'ood', 'sec', 'ecu', 'cur', 'uri', 'rit', 'ity', 'tre', 'beg', 'gin', 'han', 'kin', 'ind', 'hac', 'ack', 'cki', 'ewb', 'res', 'vir', 'att', 'tta', 'tac', 'web', 'cat', 'rse', 'cra', 'rac', 'nso', 'omw', 'mwa', 'tec', 'boo', 'adv', 'abl', 'can', 'mmi', 'cke', 'bot', 'oks', 'ick', 'eak', 'whe', 'val', 'acc', 'mon', 'dvi', 'nto', 'phi', 'deo', 'hao', 'aos', 'pst', 'ddo', 'dos', 'iru', 'kit', 'jac'] self.ngram_index_dict = self.get_ngram_index() def get_ngram_index(self): ngram_index = {} index = 0 for ngram in self.ngram_list: if ngram not in ngram_index: ngram_index[ngram] = index index += 1 return ngram_index def binary_vector(self, text): vec = [0] * len(self.ngram_index_dict) for ngram, index in self.ngram_index_dict.items(): if ngram in text: vec[index] = 1 return vec def frequency_vector(self, text): vec = [0] * len(self.ngram_index_dict) for ngram, index in self.ngram_index_dict.items(): vec[index] = text.count(ngram) return vec def relative_frequency_vector(self, freq_vec): total = 0 for count in freq_vec: total += count vec = [0] * len(freq_vec) if total > 0: for i, count in enumerate(freq_vec): vec[i] = count / total return vec def transform(self, text): clean_sent = re.sub(r'[^a-zA-Z ]', '', text).lower() bin_vec = self.binary_vector(clean_sent) return bin_vec def save(tf, fname): with open(fname, 'wb') as file: pickle.dump(tf, file) def load(fname): with open(fname, 'rb') as f: return pickle.load(f) # file = open('transformer.pickle', 'rb') # tf = pickle.load(file) # sentence = "The court has larger bounds when playing doubles" # # vec = tf.transform(sentence) # print(vec) # mat = coo_matrix(vec) # # temp = hstack([mat, mat]) # print(temp) # file = open('mlp.pickle', 'rb') # mlp = pickle.load(file) # # result = mlp.predict_proba([vec])[0] # print(result)