this is based on calsyslab project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

232 lines
9.7 KiB

__author__ = 'DarkWeb'
# Here, we are importing the auxiliary functions to clean or convert data
from MarketPlaces.Utilities.utilities import *
def darkdock_description_parser(soup):
"""Parses the description pages of a DarkDock marketplace.
It takes a BeautifulSoup object that represents the HTML page of a description page, and
extracts various information such as vendor name, product name, etc.
Args:
soup: A BeautifulSoup object that represents the HTML page of a description page.
Returns:
The row of a description item as a tuple containing the information fields extracted from the description page.
"""
vendor = "-1" # 0 Vendor_Name
success = "-1" # 1 Vendor_Successful_Transactions
rating_vendor = "-1" # 2 Vendor_Rating
name = "-1" # 3 Product_Name
describe = "-1" # 4 Product_Description
CVE = "-1" # 5 Product_CVE_Classification (Common Vulnerabilities and Exposures)
MS = "-1" # 6 Product_MS_Classification (Microsoft Security)
category = "-1" # 7 Product_Category
views = "-1" # 8 Product_Number_Of_Views
reviews = "-1" # 9 Product_Number_Of_Reviews
rating_item = "-1" # 10 Product_Rating
addDate = "-1" # 11 Product_AddedDate
BTC = "-1" # 12 Product_BTC_SellingPrice
USD = "-1" # 13 Product_USD_SellingPrice
EURO = "-1" # 14 Product_EURO_SellingPrice
sold = "-1" # 15 Product_QuantitySold
left = "-1" # 16 Product_QuantityLeft
shipFrom = "-1" # 17 Product_ShippedFrom
shipTo = "-1" # 18 Product_ShippedTo
image = "-1" # 19 Product_Image
vendor_image = "-1" # 20 Vendor_Image
# Finding Vendor
vendor = soup.select_one('table tr:nth-of-type(2) td:nth-of-type(3) a u').text
vendor = cleanString(vendor)
vendor = vendor.strip()
# Finding Product Name
headings = soup.find('div', {'class': 'main'}).find_all('div', {'class': 'heading'})
name = headings[0].text
name = cleanString(name)
name = name.strip()
# Finding the Product description
describe = soup.find('div', {'class': 'tab1'}).text
describe = cleanString(describe)
describe = describe.strip()
# Finding the Product category
category = soup.select_one('table tr:nth-of-type(6) td:nth-of-type(3)').text
category = cleanString(category)
category = category.strip()
# Finding Number of Product Reviews
reviews = headings[1].text
match = re.search(r'\((\d+)\)', reviews).group(1)
reviews = cleanNumbers(reviews)
reviews = reviews.strip()
# Finding Prices
USD = soup.select_one('table tr:nth-of-type(1) td:nth-of-type(3)').text
USD = cleanNumbers(USD)
USD = USD.strip()
# Finding the Product Quantity Available
left = soup.select_one('table tr:nth-of-type(7) td:nth-of-type(3)').text
left = cleanNumbers(left)
left = left.strip()
# Finding Product Shipped From
shipFrom = soup.select_one('table tr:nth-of-type(3) td:nth-of-type(3)').text
shipFrom = cleanString(shipFrom)
shipFrom = shipFrom.strip()
# Finding Product Shipped To
shipTo = soup.select_one('table tr:nth-of-type(5) td:nth-of-type(3)').text
shipTo = cleanString(shipTo)
shipTo = shipTo.strip()
# Finding Product Image
image = soup.find('img', {'class': 'bigthumbnail'}).get('src')
image = image.split('base64,')[-1]
# Populating the final variable (this should be a list with all fields scraped)
row = (vendor, rating_vendor, success, name, describe, CVE, MS, category, views, reviews, rating_item, addDate,
BTC, USD, EURO, sold, left, shipFrom, shipTo, image, vendor_image)
# Sending the results
return row
def darkdock_listing_parser(soup):
"""Parses the listing pages of a DarkDock marketplace.
It takes a BeautifulSoup object that represents the HTML page of a listing page,
and extracts various information such as vendor name, product name, etc. It then
removes and cleans the extracted information by passing it to the organizeProducts
function.
Args:
soup: A BeautifulSoup object that represents the HTML page of a listing page.
Returns:
The row of a description item as a tuple containing the information fields extracted from the listing page.
"""
# Fields to be parsed
nm = 0 # Total_Products (Should be Integer)
mktName = "DarkDock" # 0 Marketplace_Name
vendor = [] # 1 Vendor
rating_vendor = [] # 2 Vendor_Rating
success = [] # 3 Vendor_Successful_Transactions
name = [] # 4 Product_Name
CVE = [] # 5 Product_CVE_Classification (Common Vulnerabilities and Exposures) dont worry about this
MS = [] # 6 Product_MS_Classification (Microsoft Security) dont worry about this
category = [] # 7 Product_Category
describe = [] # 8 Product_Description
views = [] # 9 Product_Number_Of_Views
reviews = [] # 10 Product_Number_Of_Reviews
rating_item = [] # 11 Product_Rating
addDate = [] # 12 Product_AddDate
BTC = [] # 13 Product_BTC_SellingPrice
USD = [] # 14 Product_USD_SellingPrice
EURO = [] # 15 Product_EURO_SellingPrice
sold = [] # 16 Product_QuantitySold
qLeft = [] # 17 Product_QuantityLeft
shipFrom = [] # 18 Product_ShippedFrom
shipTo = [] # 19 Product_ShippedTo
image = [] # 20 Product_Image
image_vendor = [] # 21 Vendor_Image
href = [] # 22 Product_Links
listings = soup.findAll('div', {'class': 'item'})
# Populating the Number of Products
nm = len(listings)
cat = soup.find('div', {'class': 'heading'}).text
cat = cleanString(cat)
cat = cat.strip()
for listing in listings:
# Finding the Vendor
vendor_name = listing.find('div', {'class': 'seller'}).text
vendor.append(vendor_name)
# Finding the Product
product = listing.find('div', {'class': 'title'}).text
product = cleanString(product)
product = product.strip()
name.append(product)
# Finding the Category
category.append(cat)
# Finding description
description = listing.find('div', {'class': 'description'}).text
description = cleanString(description)
description = description.strip()
describe.append(description)
# Finding product views
num_view = listing.select_one('.stats table tr:nth-of-type(3) td:nth-of-type(1)').text
num_view = cleanNumbers(num_view)
num_view = num_view.strip()
views.append(num_view)
# Finding product reviews
num_reviews = listing.select_one('.stats table tr:nth-of-type(3) td:nth-of-type(3)').text
num_reviews = cleanNumbers(num_reviews)
num_reviews = num_reviews.strip()
reviews.append(num_reviews)
# Finding product rating based on width style
rating = listing.find('div', {'class': 'stars2'}).get('style')
rating = re.findall(r"\d+\.\d+|\d+", rating)[0]
rating = cleanNumbers(rating)
rating = rating.strip()
rating_item.append(rating)
# Finding Prices
price = listing.find('div', {'class': 'price'}).text
price = price.strip()
USD.append(price)
# Finding number of times product is sold
num_sold = listing.select_one('.stats table tr:nth-of-type(3) td:nth-of-type(2)').text
num_sold = cleanNumbers(num_sold)
num_sold = num_sold.strip()
sold.append(num_sold)
# Finding shipping locations
shipping = listing.find('div',{'class': 'shipping'}).text
shippedFrom, shippedTo = cleanString(shipping).split(' > ')
shipTo.append(shippedTo)
shipFrom.append(shippedFrom)
# Adding the url to the list of urls
link = listing.find('a', recursive=False).get('href')
href.append(link)
image_vendor.append("-1")
return organizeProducts(mktName, nm, vendor, rating_vendor, success, name, CVE, MS, category, describe, views,
reviews, rating_item, addDate, BTC, USD, EURO, sold, qLeft, shipFrom, shipTo, href, image, image_vendor)
def darkdock_links_parser(soup):
"""Returns a list of description links from a listing page.
It takes a BeautifulSoup object that represents the HTML page of a listing page, and
extracts all the description links from the page.
Args:
soup: A BeautifulSoup object that represents the HTML page of a listing page.
Returns:
A list of description links from a listing page.
"""
# Returning all links that should be visited by the Crawler
href = []
listing = soup.find_all('a', href=lambda href: href and '/product/' in href)
for a in listing:
href.append(a['href'])
return href