this is based on calsyslab project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

178 lines
8.3 KiB

__author__ = 'DarkWeb'
# Here, we are importing the auxiliary functions to clean or convert data
from MarketPlaces.Utilities.utilities import *
# Here, we are importing BeautifulSoup to search through the HTML tree
from bs4 import BeautifulSoup
# parses description pages, so takes html pages of description pages using soup object, and parses it for info it needs
# stores info it needs in different lists, these lists are returned after being organized
# @param: soup object looking at html page of description page
# return: 'row' that contains a variety of lists that each hold info on the description page
def quest_description_parser(soup):
# Fields to be parsed
vendor = "-1" # 0 *Vendor_Name
success = "-1" # 1 Vendor_Successful_Transactions
rating_vendor = "-1" # 2 Vendor_Rating
name = "-1" # 3 *Product_Name
describe = "-1" # 4 Product_Description
CVE = "-1" # 5 Product_CVE_Classification (Common Vulnerabilities and Exposures)
MS = "-1" # 6 Product_MS_Classification (Microsoft Security)
category = "-1" # 7 Product_Category
views = "-1" # 8 Product_Number_Of_Views
reviews = "-1" # 9 Product_Number_Of_Reviews
rating_item = "-1" # 10 Product_Rating
addDate = "-1" # 11 Product_AddedDate
BTC = "-1" # 12 Product_BTC_SellingPrice
USD = "-1" # 13 Product_USD_SellingPrice
EURO = "-1" # 14 Product_EURO_SellingPrice
sold = "-1" # 15 Product_QuantitySold
left = "-1" # 16 Product_QuantityLeft
shipFrom = "-1" # 17 Product_ShippedFrom
shipTo = "-1" # 18 Product_ShippedTo
image = "-1" # 19 Product_Image
vendor_image = "-1" # 20 Vendor_Image
# Finding Product Name
name = soup.find('div', class_='card-header bg-dark text-white rounded-0 text-center').text
name = cleanString(name).strip()
# USD Price
USD = soup.find('small', text='Product Price:').find_next('small').text.replace('$', '').strip()
# Product Description
describe = soup.find('textarea').text
describe = cleanString(describe).strip()
# Finding Product Image
image = soup.find('img', {'class': 'img-fluid'})
image = image.get('src').split('base64,')[-1]
# Finding Vendor Image
vendor_image = soup.select_one('.card-body.bg-mgray.css-selector.shadow img')
vendor_image = vendor_image.get('src').split('base64,')[-1]
# Finding Successful Transactions
success = soup.find('strong', text='Total Sales:').parent.text
success = cleanNumbers(success).strip()
# Finding Vendor Rating
temp = soup.find('strong', text='Rating:').parent
rating_vendor = len(temp.findAll('i', {"class": "fas fa-star"}))
half_stars = len(temp.findAll('i', {'class': "fas fa-star-half-alt"}))
if half_stars > 0:
rating_vendor += 0.5
# Finding Item Rating
temp = soup.find('small', text='Average Product Score:').find_next('small')
rating_item = len(temp.findAll('i', {"class": "fas fa-star"}))
half_stars = len(temp.findAll('i', {'class': "fas fa-star-half-alt"}))
if half_stars > 0:
rating_item += 0.5
# Populating the final variable (this should be a list with all fields scraped)
row = (vendor, rating_vendor, success, name, describe, CVE, MS, category, views, reviews, rating_item, addDate,
BTC, USD, EURO, sold, left, shipFrom, shipTo, image, vendor_image)
# Sending the results
return row
# parses listing pages, so takes html pages of listing pages using soup object, and parses it for info it needs
# stores info it needs in different lists, these lists are returned after being organized
# @param: soup object looking at html page of listing page
# return: 'row' that contains a variety of lists that each hold info on the listing page
def quest_listing_parser(soup):
# Fields to be parsed
nm = 0 # *Total_Products (Should be Integer)
mktName = "quest" # 0 *Marketplace_Name
vendor = [] # 1 *Vendor y
rating_vendor = [] # 2 Vendor_Rating
success = [] # 3 Vendor_Successful_Transactions
name = [] # 4 *Product_Name y
CVE = [] # 5 Product_CVE_Classification (Common Vulnerabilities and Exposures) dont worry about this
MS = [] # 6 Product_MS_Classification (Microsoft Security) dont worry about this
category = [] # 7 Product_Category y
describe = [] # 8 Product_Description
views = [] # 9 Product_Number_Of_Views
reviews = [] # 10 Product_Number_Of_Reviews
rating_item = [] # 11 Product_Rating
addDate = [] # 12 Product_AddDate
BTC = [] # 13 Product_BTC_SellingPrice
USD = [] # 14 Product_USD_SellingPrice y
EURO = [] # 15 Product_EURO_SellingPrice
sold = [] # 16 Product_QuantitySold
qLeft = [] # 17 Product_QuantityLeft
shipFrom = [] # 18 Product_ShippedFrom
shipTo = [] # 19 Product_ShippedTo
image = [] # 20 Product_Image
image_vendor = [] # 21 Vendor_Image
href = [] # 22 Product_Links
# Extract all product listings
listing = soup.findAll('div', class_='col-md-2 my-md-0 col-12')
# Populating the Number of Products
nm = len(listing)
for a in listing:
# Extracting Product URL & Name
product_link_tags = a.find_all('a', class_='badge-info')
if product_link_tags:
# Using the first tag as default
product_link_tag = product_link_tags[0]
href.append(product_link_tag['href'])
name.append(cleanString(product_link_tag.text).strip())
# Extracting Product Image
img_tag = a.find('img')
if img_tag:
image_data = img_tag['src'].split('base64,')[-1]
image.append(image_data)
# Extracting Vendor Name
vendor_tag = a.find('a', class_='badge-dark')
if vendor_tag:
vendor.append(cleanString(vendor_tag.text.replace('👤', '')).strip())
# Extracting Product Price in USD
price_tag = a.find('a', class_='text')
if price_tag:
USD.append(price_tag.text.replace("$", "").strip())
category_tag = soup.find('span', class_= 'btn btn-sm btn-outline-mgray active border-info')
if category_tag:
category.append(cleanString(category_tag.text).strip())
# Populate the final variable (this should be a list with all fields scraped)
return organizeProducts(mktName, nm, vendor, rating_vendor, success, name, CVE, MS, category, describe, views,
reviews, rating_item, addDate, BTC, USD, EURO, sold, qLeft, shipFrom, shipTo, href, image, image_vendor)
# called by the crawler to get description links on a listing page
# @param: beautifulsoup object that is using the correct html page (listing page)
# return: list of description links from a listing page
def quest_links_parser(soup):
# Returning all product links
href = []
# Locate all divs with class 'row'
row_divs = soup.findAll('div', class_='row')
for row_div in row_divs:
# Locate all product divs within the current 'row' div
product_divs = row_div.findAll('div', class_='col-md-2 my-md-0 col-12')
for product_div in product_divs:
# Locate the anchor tag containing the product link within each product div
product_link_tag = product_div.find('a', class_='badge-info')
if product_link_tag and product_link_tag.has_attr('href'):
href.append(product_link_tag['href'])
return href