|
|
- import re
- import pickle
- from scipy.sparse import coo_matrix, hstack, csr_matrix
-
-
- class Transformer:
- def __init__(self):
- self.ngram_list = ['ake', 'eta', 'ail', 'ing', 'sta', 'xpl', 'plo', 'loi', 'oit', 'tat', 'use', 'mal', 'alw', 'lwa', 'vel', 'ell', 'goo', 'ood', 'sec', 'ecu', 'cur', 'uri', 'rit', 'ity', 'tre', 'beg', 'gin', 'han', 'kin', 'ind', 'hac', 'ack', 'cki', 'ewb', 'res', 'vir', 'att', 'tta', 'tac', 'web', 'cat', 'rse', 'cra', 'rac', 'nso', 'omw', 'mwa', 'tec', 'boo', 'adv', 'abl', 'can', 'mmi', 'cke', 'bot', 'oks', 'ick', 'eak', 'whe', 'val', 'acc', 'mon', 'dvi', 'nto', 'phi', 'deo', 'hao', 'aos', 'pst', 'ddo', 'dos', 'iru', 'kit', 'jac']
-
- self.ngram_index_dict = self.get_ngram_index()
-
- def get_ngram_index(self):
- ngram_index = {}
- index = 0
- for ngram in self.ngram_list:
- if ngram not in ngram_index:
- ngram_index[ngram] = index
- index += 1
- return ngram_index
-
- def binary_vector(self, text):
- vec = [0] * len(self.ngram_index_dict)
- for ngram, index in self.ngram_index_dict.items():
- if ngram in text:
- vec[index] = 1
- return vec
-
- def frequency_vector(self, text):
- vec = [0] * len(self.ngram_index_dict)
- for ngram, index in self.ngram_index_dict.items():
- vec[index] = text.count(ngram)
- return vec
-
- def relative_frequency_vector(self, freq_vec):
- total = 0
- for count in freq_vec:
- total += count
-
- vec = [0] * len(freq_vec)
- if total > 0:
- for i, count in enumerate(freq_vec):
- vec[i] = count / total
- return vec
-
- def transform(self, text):
- clean_sent = re.sub(r'[^a-zA-Z ]', '', text).lower()
-
- bin_vec = self.binary_vector(clean_sent)
-
- return bin_vec
-
-
- def save(tf, fname):
- with open(fname, 'wb') as file:
- pickle.dump(tf, file)
-
-
- def load(fname):
- with open(fname, 'rb') as f:
- return pickle.load(f)
-
-
- # file = open('transformer.pickle', 'rb')
- # tf = pickle.load(file)
-
- # sentence = "The court has larger bounds when playing doubles"
- #
- # vec = tf.transform(sentence)
- # print(vec)
-
- # mat = coo_matrix(vec)
- #
- # temp = hstack([mat, mat])
- # print(temp)
-
- # file = open('mlp.pickle', 'rb')
- # mlp = pickle.load(file)
- #
- # result = mlp.predict_proba([vec])[0]
- # print(result)
|