this is based on calsyslab project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

80 lines
2.3 KiB

import re
import pickle
from scipy.sparse import coo_matrix, hstack, csr_matrix
class Transformer:
def __init__(self):
self.ngram_list = ['ake', 'eta', 'ail', 'ing', 'sta', 'xpl', 'plo', 'loi', 'oit', 'tat', 'use', 'mal', 'alw', 'lwa', 'vel', 'ell', 'goo', 'ood', 'sec', 'ecu', 'cur', 'uri', 'rit', 'ity', 'tre', 'beg', 'gin', 'han', 'kin', 'ind', 'hac', 'ack', 'cki', 'ewb', 'res', 'vir', 'att', 'tta', 'tac', 'web', 'cat', 'rse', 'cra', 'rac', 'nso', 'omw', 'mwa', 'tec', 'boo', 'adv', 'abl', 'can', 'mmi', 'cke', 'bot', 'oks', 'ick', 'eak', 'whe', 'val', 'acc', 'mon', 'dvi', 'nto', 'phi', 'deo', 'hao', 'aos', 'pst', 'ddo', 'dos', 'iru', 'kit', 'jac']
self.ngram_index_dict = self.get_ngram_index()
def get_ngram_index(self):
ngram_index = {}
index = 0
for ngram in self.ngram_list:
if ngram not in ngram_index:
ngram_index[ngram] = index
index += 1
return ngram_index
def binary_vector(self, text):
vec = [0] * len(self.ngram_index_dict)
for ngram, index in self.ngram_index_dict.items():
if ngram in text:
vec[index] = 1
return vec
def frequency_vector(self, text):
vec = [0] * len(self.ngram_index_dict)
for ngram, index in self.ngram_index_dict.items():
vec[index] = text.count(ngram)
return vec
def relative_frequency_vector(self, freq_vec):
total = 0
for count in freq_vec:
total += count
vec = [0] * len(freq_vec)
if total > 0:
for i, count in enumerate(freq_vec):
vec[i] = count / total
return vec
def transform(self, text):
clean_sent = re.sub(r'[^a-zA-Z ]', '', text).lower()
bin_vec = self.binary_vector(clean_sent)
return bin_vec
def save(tf, fname):
with open(fname, 'wb') as file:
pickle.dump(tf, file)
def load(fname):
with open(fname, 'rb') as f:
return pickle.load(f)
# file = open('transformer.pickle', 'rb')
# tf = pickle.load(file)
# sentence = "The court has larger bounds when playing doubles"
#
# vec = tf.transform(sentence)
# print(vec)
# mat = coo_matrix(vec)
#
# temp = hstack([mat, mat])
# print(temp)
# file = open('mlp.pickle', 'rb')
# mlp = pickle.load(file)
#
# result = mlp.predict_proba([vec])[0]
# print(result)